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MATHEMATICAL MODEL OF HYDRATE FORMATION IN THE FLOW 

OF MOIST GAS IN TUBES 

V. M. Bilyushov UDC 532. 542 

The problem of hydrate formation in the flow of moist gas in tubes is formulated, 
under the assumption that the temperature of hydrate formation depends not only 
on the pressure but also on the water-vapor concentration at the phase-transitlon 
surface. 

The problem of hydra te  fo rmat ion  in  gas p i p e l i n e s  was f i r s t  cons idered  in  [1-3] ,  where 
the conditions of hydrate formationwere described, and recommendations for the prevention 
of hydrate formation in gas-plpellne operations were made; these reduce to the need to dry 
the gas, removecondensed water, and ~nploy pipeline operating conditions that eliminate the 
possibility of hydrate formation. The problem was then discussed in [4-10], where attempts 
were made to determine in advance the sites of possible obstruction of the pipeline by hy- 
drates, and to give a quantitative calculation of the mass of hydrate forming in the course of 
gas transport. However, these workshave a series of deficiencies. In [8], for exmnple, the 
mass rate of hydrate formation was estimated, but no,mention was made of which section of the 
pipeline was subject to hydrate deposition. In [9], the region of possible hydrate formation 
was determined on the basis of the thermodynamic conditions of moisture removal from the gas, 
but the process of hydrate depositlon itself was not considered. In [10], the model of hy- 
drate formation was constructed from the numerical solution of the equations of nonisothermal 
motion of a real gas, and the action Of the hydrate obstructlonwas modeled by a local resis- 
tance with an unknown drag coefficient, which is a significant deficiency of the model. 
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In all these works, it is assumed that theprocess of hydrate-layer growth at the pipe- 
line walls is determined solely by the conditions of precipitation of the moisture. No ac- 
count is taken here of heat transfer between the moving gas and the hydrate, and the influ- 
ence of the hydrate layer on the gas flow is not considered, i.e., no account is taken of 
the influence of the change in through cross section of the tube on the flow parameters, 
which means that it is impossible to consider the dynamics of hydrate-layer growth over 
time. 

In [ii], the problem of hydrate-layer growth in a pipeline was solved within the frame- 
work of the Stefan problem, i.e., it was assumed that the growth rate of the hydrate layer 
is determined by heat-transfer processes between the gas flow and the hydrate layer. It was 
assumed that the free moisture required for hydrate formation is sufficient over the whole 
length of the tube. In real conditions, all the moisture in the pipeline is in the vapor 
state. 

It is known that the formation of hydrate requires the satisfaction of two conditions 
simultaneously: thermodynamic and moisture-content conditions. Below, a mathematical model 
of hydrate formation in the flow of a real moist gas in a tube is proposed, taking account 
of both these conditions. 

The mathematical model is based on the following physical model: the process of hydrate 
formation begins at the tube wall, since the gas close to the wall is considerably super- 
cooled in comparison with the flow core and its velocity of motion is a minimum, which facili- 
tates the retention of newly formed hydrate at the tube wall. It is assumed that the rate 
of hydrate-layer growth is determined both by the heat transfer from the gas to the tube wall 
and by the supply of moisture to the reaction surface. In this framework, the process of hy- 
drate formation and growth in gas flow in tubes must be described by a conjugate problem of 
heat and mass transfer. 

Since gas flow in boreholes and gas pipelines has a clearly expressed tubulent character, 
the equations describing the gas flow in the tube become one-dimensional, and take the form 
[121 
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(1) 

Assuming that the change in thickness of the hydrate layer over the tube length is small, 
and using the condition of "adhesion" at the hydrate-layer boundary, it is" found that 

oR., (Dacl 
- Ot ' V , ~ = V ~ ,  j~=p,~,\ -~r ]w (2) 

The density at the phase-transitlon boundary is assumed to be the same as in the flow core, 
i.e.~ pw = ~. 

At the phase-transition boundary, there is a discontinuous change in a series of param- 
eters. Taking account of the immobility of the hydrate, the absence of moisture flow in the 
hydrate, and Eq. (2), the conditions at the discontinuity surface are written in the form 

II,,p,o (R~ - -  V,,,) = rI~phR~, 
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U s i n g  ~ q s .  
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(2) and (3 ) ,  the  system in  Eq. (1) may be brought  to  the  f o m  
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The r e l a t i o n  between the  p r e s s u r e ,  t empera tu re ,  and m o i s t u r e  c o n c e n t r a t i o n  a t  the  ges- -  
h y d ra t e  i n t e r f a c e  i s  determined by the  e q u a C i o n o f  s t a t e  of  c h e v a p o r - - g a s m i x C u r e ,  which may 
be w r i t t e n  in  the  fo~m 

a(P, Tw) }Xn,o zg(P, Tw) 
O.  = p , a = - -  (5)  

phil, ~ 1 + a (P, To,) I~g Zs,o (P, Tw) 

There a r e  a number of  formulas  f o r  c a l c u l a t i n g  the  wa te r  vapor  p r e s s u r e  above the  h y d r a t e .  
Thus, f o r  dry methane gases  i n  the  t empera tu re  range from 0 to  --50OC, the  recommended equa-  
t i o n  in  [5]  

PnH,o = exp (24.87 - -  6235/T - -  O. 1593 In P). 
(6) 

In [13] ,  the  fo l lowing  equa t ion  was proposed 

lg (P~,o/Y) = -- VH,O (P -- y)/RT. (7) 

The wate r  vapor  p r e s s u r e  above the  hyd ra t e  may a l s o  be c a l c u l a t e d  by means of  the  Ba r r e r - -  
SCyuart equa t i on  

P .o P .o rl (1+ 21c.,P,) (.) 
re=l,2 ] 

w h e r e  PHzO i s  d e t e r m i n e d  [14]  f r o m t h e  e q u a t i o n  

B 
lg P~ = A ClgT. (9) 

T 

The system in  Eq. (4) i s  complemented by the  equa t ion  of  s t a t e  of  t h e  gas m i x t u r e  in  
the  f low core  

P = pRT [ z.,o O+ zg (I_0)] 
lXn, o IXg J (io~ 

and the  thermodynamic r e l a t i o n  

d i = C p d r q - [ v - - T (  Ov (11) 
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The heat and mass transfer will be assumed to conform to the Newton and Fick laws, 
while the tangentlal stress is determined from the Darcy--Weisbakh law 

OT (DOC'  t 
(~" --~r  3~ = ~ ( T ~ -  T)' Or /w = [~ (Ow-  0)" 

OU 
(12) 

In determining the heat- and mass-transfer coefficients, a two-layer model of turbu- 
lent transfer is taken as the starting point, and it is assumed that there is a region be- 
tween the core of the gas flow and the hydrate layer in which the temperature and concentra- 
tion change from T and 0 in the flow core to T w and 0 w at the phase-transitlon surface. In 
this transfer scheme, the heat- and mass-transfer coefficients may be written in the form 

(z=~/6, ~---D/6, 
(13) 

where ~ is the thickness of the region between the flow core and the surface of the hydrate 
layer~ equal to the thickness of the lamlnar sublayer 

VT 6 =  1 1 . 5 - - ,  u, := V. (14) 
i t ,  

Using Eq. (12) and assuming a quaslsteady temperature distribution in the hydrate layer,  i t  
follows from Eq. (3) that 

Rw -- ~n (Tw --  TN) u (T,~ --  T) 
LphRo, In R~'I Ro Lph ' (15) 

R,,, {~P (Ow-- O). (16) 
OhPh 

If the pipeline is laid in the ground, the heat transfer between the pipeline and the ground 
must be taken into account. In this case, the thermal condition in Eq. (15) takes the form 
[15]  

(-~h r ul ) Lob ' (15 ' )  LphR~ In Rw/Ro-- Zg-----:-. 

where G is the thermal resistance of the perturbed ground 

t ~Zo RlnR--R--k 1 ' s o =  in H -F R-"~-~ 1 . 

The radius of perturbation of the ground R(t) is determined by solving an ordinary differen- 
tial equation [15].  

From Eqs. (15) and (16), an equation for the unknown concentration at the phase inter- 
face is obtained 

oh [ 2 (rw - -  rN) 1 
ew = O+ ~ o L 1 / ~  ~ L ~ aV-~w(Tw--T) "] (17) 

Using Eq. (5), 0 w is ellminated from consideration, and an equation is obtained for de- 
termining the temperature at the phase-transitlon boundary 
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(ZS) 

49 



Thus, Eq8. ( 4 ) ,  (i0), (11), (15), and (18) form a closed system of equations for the 
varlable8 0, V, Sw, P, T, i, | T w. 

Note that, excludlng fromconslderatlon the last equation of the system in Eq8. (8) and 
(9), and assuming that  the phase-transltlon temperature depends only on the pressure, accord- 
ins to the law in P - A--B/Tw, the formulatlon of the problem In [ii] is obtained. 

Quaslsteady conditions of gas flow in the pipeline are considered. It is necessary to 
make a series of assumptions here, simplifying the basic system Of equations: that the 
change in thickness of the hydrate layer over time and along the tube is sufficiently small 
that the mass flow rate of gas is much larger than the mass growth rate of the hydrate; that 
the heat conduction in the axial direction may be neglected, for both the gas and the hydrate; 
that the physical properties of the gas and the hydrate are constant; that the pressure, 
temperature, and concentration at the inlet are constant; that the change in molsture concen- 
tratlon along the tube axis 18 determined by the conditions of its transition to the hydrate 
state. 

Taking account of the assumptions adopted, the systemln Eq. (4) takes the form 

pVSw = M =  const, dP _ hi aT h~ dO = phe~ dS,, 
dx ---~-' 'dx  = a ' dx M dt (19) 

The d e t e r m i z m n t s  h ,  h l ,  and ha are as follows 

h = 

M2 M2( ) 

A 1 ---- 

S~ dx v 4S~ '5 S~ p 

V~M~v~ r . 2o~ V'-~-~(Tw - -  T) ~_ aC2, ~ - -,, Cp 

a~ --=, 

M ~- c)v. ~ M2v dS~, g sin ~, l/'~M2vr 
z + - z -  ( - ~ - )  ; 

Sw r S~ dx v 4S~ '5 

Ov ) . 2aV'~ '~w(Tw--T)  V~M~v2r 
- r  -~-  , M ~ 4s~ '~ 

Then Eq. (15) 18 tewrltten in the form 

d s .  4 ~  (V.  - -  re) _ 2~ V ' ~ - ~ ( T .  - -  T) (20)  
dt = LphlnSw[So LPa 

The calculatlon algorithm is constructed as follows. 

i. With a fixed cross section Sw(x) over time, Tw(O) is found from the specified values 
Po, To, and 80 in the inlet cross section of the tube-by means of Eq. (18). 

2. Using the result obtained for Tw(0), the system in Eq. (19) is integrated over one 
step in x. 

3. From the values of P(Ax), T(Ax), e(Ax) found at the end of the integration interval, 
Tw(~x) is determined, and integration over the next interval is performed, and so on, as long 
as x ~.~ l, the length of the pipeline. 

4, Making a time step, a new value of the cross-sectlonal area 18 obtained from Eq. (20), 
and the calculation procedure Is repeated. 
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This algorithm may also be used in calculating the process of hydrate formation in a 
borehole or gas pipeline that is not in use. Even in such a borehole, the gas is not at rest, 
because the cap at the end of the borehole leaks a certain amount of the gas. The mass flow 
rate of gas in unused boreholes amounts to 5000 mS/day, but even at flow rates of ~ 1000 ms/ 
day the flow in the borehole is turbulent, since Re ~ 7 �9 l0 s in this case. Therefore, the 
above formulation of the problem is valld in the present case. Numerical calculation allows 
the safe standing time of a borehole to be determined. 

For a short tube, the change in the parameters over the length may be neglected. In 
the limiting case, a system of equations describing the growth of the hydrate layer in a fixed 
tube cross section may be obtained from Eq. �9 

dS~, 4n~,t, (T~ -- TN) 2a l / aS,, (T~ -- T) 
dt Lph In SMSo LPh ' 

dV phV dS~o ~ T ,l f "  V z ,  
dt = - -  gsin ? p&,, dt 4 g Sw 

dO 9h (Oh - -  O) dS~ 
dt 9S,, dt ' 0 ( 0 ) = 0 o ,  

dP AI dT h'2 
dt ' = T '  P (O)-- P~ d---{- = A' ' T (O) =To, 

S., (0) = So, 

v(o) = vo, 
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where 

A'--- p s i -  [Cp ' do Op 
, . i a r  },,]' 

A; = psych, (oh-- p) 
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d, --~-  ) p ' I (P - phL) dt 

9VS.,. ( dV 
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\ dt v dt 

A case t h a t  is important for practical applications is now considered: gas flow in a 
tube in the presence of local resistances. The latter significantly disrupt the conditions 
of gas flow in their ~,-,ediate vicinity. At local resistances, there is a loss in pressure 
head, which is associated with pressure variation, in the general case. As a result of the 
throttling of the gas, its temperature rises, and hence there is a discontinuity in its 
density and velocity. On account of the change in flow parameters of the gas, accelerated 
precipitation of hydrates occurs close to the local resistances. The following algorithm is 
proposed for the calculation of the hydrate formation with gas flow in a tube with local 
resistances. 

Using the system in Eq. (19), the calculation is performed in the section of smooth tube 
up to the first local resistance. From the solution of this system, the flow parameters pre- 
ceding the local resistance (denoted by the subscript '~Inus") are found. Then, the parame- 
ters following the resistance (subscript "plus") are determ/ned from the r~sults for the 
parameters preceding It, by means of the system of equations 

9+V+S+ = p_V_SL = M, 

@+ ~ 0_, 

p ,  = p _ _  ~ p _ v i  
2 ' 

T+ = T_ - -  e (P_, 7_) (P_ -- P+), 

9+ = 9+ (P+, T+). 

(22) 

These results for the parameters are then taken as the initial values for the calculation in 
the section of tube up to the next resistance. 
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NOTATION 

V, r P, i ,  mean (over the tube cross sec t ion)  v e l o c i t y ,  dens i ty ,  p ressure ,  and en tha l -  
py; v - l / p ,  s p e c i f i c  volmne of gas; 0, e h, mois ture  concent ra t ion  in  the gas flow and in  
the hydrate;  Rw, ~w, Sw, rad ius ,  per imeter ,  and c r o s s - s e c t i o n a l  area  of the gas flow~ T, C, 
V w, U, l oca l  values of the temperature,  concen t ra t ion ,  and the normal and t angen t i a l  compo- 
nents of the v e l o c i t y  vec tor ;  Dn, v e l o c i t y  of phase - in t e r f ace  motion in  the d i r e c t i o n  of i t s  
normal; Jn,  normal component of the flow of ma te r i a l  a t  the p h a s e - t r a n s i t i o n  surface;  v, p, 
A, D, kinematic and dynamic v i s c o s i t y ,  heat  conduction,  and d i f fu s ion  c o e f f i c i e n t ;  t ,  x, r ,  
time and s p a t i a l  coordinates ;  L, l a t e n t  heat  of phase t r a n s i t i o n ;  y, P~ n, P~-O, sa tura ted  
water vapor pressure  above water ,  an empty hydrate  l a t t i c e ,  and hydra te ,  VHsO, molar volume 
of l iqu id  water;  Ci~, LanEmuir constants ;  a ,  B, $, h e a t - a n d  mass - t rans fe r  c o e f f i c i e n t s  and 
hydraul ic  drag c o e f f i c i e n t ;  ~, l oca l  drag c o e f f i c i e n t ;  H, depth a t  which gas p ipe l ine  i s  
l a id ;  Ro, So, rad ius  and c r o s s - s e c t i o n a l  area of tube; R, rad ius  of thermal pe r tu rba t ion  of 
ground; z, compress ib i l i ty ;  r Joule--Thompson c o e f f i c i e n t ;  ~HsO, ~g, molecular  weight of 
water and gas. Ind ices :  w, h, g, HzO, gr ,  phase i n t e r f a c e ,  hydra te ,  gas,  water ,  and ground. 
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