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MATHEMATICAL MODEL OF HYDRATE FORMATION IN THE FLOW
OF MOIST GAS IN TUBES

V. M. Bilyushov 4 UDC 532,542

The problem of hydrate formation in the flow of moist gas in tubes is formulated,
under the assumption that the temperature of hydrate formation depends not only
on the pressure but also on the water-vapor concentration at the phase-transition

surface.

The problem of hydrate formation in gas pipelines was first considered in [1-3], where
the conditions of hydrate formation were described, and recommendations for the prevention
of hydrate formation in gas-pipeline operations were made; these reduce to the need to dry
the gas, remove condensed water, and employ pipeline operating conditions that eliminate the
possibility of hydrate formation. The problem was then discussed in [4~10], where attempts
were made to determine in advance the sites of posgsible obstruction of the pipeline by hy-
drates, and to give a quantitative calculation of the mass of hydrate forming in the course of
gas transport. However, these works have a series of deficiencies. In [8], for example, the
mass rate of hydrate formation was estimated, but no'mention was made of which section of the
pipeline was subject to hydrate deposition. In [9], the region of possible hydrate formationm
was determined on the basis of the thermodynamic conditions of moisture removal from the gas,
but the process of hydrate deposition itself was not considered. In [10], the model of hy-
drate formation was constructed from the numerical solution of the equations of nonisothermal
motion of a real gas, and the action of the hydrate obstruction was modeled by a local resis-
tance with an unknown drag coefficient, which is a significant deficiency of the model. ;
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In all these works, it is assumed that the process of hydrate-layer growth at the pipe-
line walls is determined solely by the conditions of precipitation of the moisture. No ac~
count is taken here of heat transfer between the moving gas and the hydrate, and the influ-
ence of the hydrate layer on the gas flow is not considered, i.e., no account is taken of
the influence of the change in through cross section of the tube on the flow parameters,
which means that it is impossible to consider the dynamics of hydrate-layer growth over
time.

) In {11], the problem of hydrate-layer growth in a pipeline was solved within the frame~
work of the Stefan problem, i.e., it was assumed that the growth rate of the hydrate layer
is determined by heat-transfer processes between the gas flow and the hydrate layer. It was
assumed that the free moisture required for hydrate formation is sufficient over the whole
length of the tube. In real conditions, all the moisture in the pipeline is in the vapor

state.

It is known that the formation of hydrate requires the satisfaction of two conditions
simultaneocusly: thermodynamic and moisture-content conditions. Below, a mathematical model
of hydrate formation in the flow of a real moist gas in a tube is proposed, taking account
of both these conditioms.

. The mathematical model is based on the following physical model: the process of hydrate
formation begins at the tube wall, since the gas close to the wall is considerably super-
cooled in comparison with the flow core and its velocity of motion is a minimum, which facili-
tates the retention of newly formed hydrate at the tube wall. It is assumed that the rate
of hydrate-layer growth is determined both by the heat transfer from the gas to the tube wall
and by the supply of moisture to the reaction surface. In this framework, the process of hy-
drate formation and growth in gas flow in tubes must be described by a conjugate problem of
heat and mass transfer.

Since gas flow in boreholes and gas pipelines has a clearly expressed tubulent character,
the equations describing the gas flow in the tube become one-dimensional, and take the form
{12}
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Assuming that the change in thickness of the hydrate layer over the tube length is small,
and using the condition of "adhesion" at the hydrate-layer boundary, it is found that

OR,

an =
ot

, aC
s Vnw=Vw’ ]nw=pm(D~aT) . (2)

The density at the phase-transition boundary is assumed to be the same as in the flow core,
i.e., py = p.

At the phase-transition boundary, there is a discontinuous change in a series of param-
eters., Taking account of the immobility of the hydrate, the absence of moisture flow in the
hydrate, and Eq. (2), the conditions at the discontinuity surface are written in the form

Hu‘pw (Rw - Vw) = HLLthu/9
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Using Eqs. (2) and (3), the system in Eq. (1) may be brought to the form
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The relation between the pressure, temperature, and moisture concentration at the gas—
hydrate interface is determined by the equation of state of the vapor—gas mixture, which may
be written in the form

ew - a(P, Tw) : , a—= UH,0 Zg(P; Tw)

P 1 +ap, Ty g Zmo(P, Tu)
Pho

(5)

There are a mmber of formulas for calculating the water vapor pressure above the hydrate.
Thus, for dry methane gases in the temperature range from 0 to —50°C, the recommended equa-
tion in [5]

Plo = exp (24.87 — 6235_/T —0.1593 In P).

(6)
In [13], the following equation was proposed
Ig (Phyo/5) = — Viso (P — 9)/RT.
€))]
The water vapor pressure above the hydrate may also be calculated by means of the Barrer-—
Styuart equation _
Pho=Pho T1 (14 E CrniPy) ™ (8)
m=1,2
where Pfj,o is determined [14] from the equation
0 B
lgPH’0=A*‘T"—CIgT. ) (9)

The system in Eq. (4) is cbmplemented by the equation of state of the gas mixture in
the flow core

P = oRT [ﬁw—z&u— e)] (10y
Uy,0 u‘g
and the thermodynamic relation
a0
—CdT+ |o—T (-——— dp. (11)
e [” &), ]
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The heat and mass transfer will be assumed to conform to the Newton and Fick laws,
while the tangential stress is determined from the Darcy-—Weisbakh law

5. =1, (2 o), -pe—o. (12)
—_ (u -%%*)w =‘-\§—PVZ-

In determining the heat- and mass~transfer coefficients, a two-layer model of turbu-
lent transfer is taken as the starting point, and it is assumed that there is a region be-
tween the core of the gas flow and the hydrate layer in which the temperature and concentra-
tion change from T and © in the flow core to T, and 6, at the phase-transition surface. In
this transfer scheme, the heat- and mass-transfer coefficients may be written in the form

@ =W8, B=Db, (13)

where & is the thickness of the region between the flow core and the surface of the hydrate
layer, equal to the thickness of the laminar sublayer

6=Il.5—i—, Uy = I/%V (14)

Using Eq. (12) and assuming a quasisteady temperature distribution in the hydrate layer, it
follows from Eq. (3) that

: MTy—T)  al,—T
Y LpuR,InR,IR, 7Y (15)
Rw = Bo (@w — @). (16)
B1pn .

If the pipeline is laid in the ground, the heat transfer between the pipeline and the ground

must be taken into account. In this case, the thermal condition in Eq. (15) takes the form

[15]

N T,—TN _a(l,—T)
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Ap _ xng
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where G is the thermal resistance of the perturbed ground

TR STR T IRV )
g RImMR—R-+1 Ry Rp

The radius of perturbation of the ground R(t) is determined by solving an ordinary differen-
tial equation [15].

From Eqs. (15) and (16), an equation for the unknowm concentration at the phase inter-
face is obtained

0 2 Y Wiy (T — T — ]
0,=06 h A w . Sw Tw__T .
v =0V [ S, /S, @V Sul ) a7

Using Eq. (5), 6, is eliminated from consideration, and an equation is obtained for de-
termining the temperature at the phase~transition boundary

0+ On [ 2V (T —TR)
(P, T)LV'S,, InS,/S, (18)

—a VS, (1) | =t .

ot 70y BT
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Thus, Egs. (4), (10), (11), (15), and (18) form a closed system of equations for the
variables p, V, Sy, P, T, 1, e, w®

Note that, excluding from consideration the last equation of the system in Eqs. (8) and
(9), and assuming that the phase-transition temperature depends only on the pressure, accord-
ing to the law In P = A —~ B/Tw, the formulation of the problem in [11l] is obtained.

Quasisteady conditions of gas flow in the pipeline are considered. It is necessary to
make a series of assumptions here, simplifying the basic system of equations: that the
change in thickness of the hydrate layer over time and along the tube is sufficiently small
that the mass flow rate of gas is much larger than the mass growth rate of the hydrate; that
the heat conduction in the axial direction may be neglected, for both the gas and the hydrate;
that the physical properties of the gas and the hydrate are conmstant; that the pressure,
temperature, and concentration at the inlet are constant; that the change in moisture concen-
tration along the tube axis is determined by the conditions of its tramsition to the hydrate
state.

Taking account of the assumptions adopted, the system in Eq. (4) takes the form

pVS, = M = const, %e- _A AT A 40 08y dS, (19)
X

A dx A’ dx M

The determinants A, A,, and A; are as follows
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Then Eq. (15) is rewritten in the form
dS,, 4ok (Ty—TN) 20 VaS, (Tw —T) , (20)
dt — LpyInS,/S, Lo ' :

The calculation algorithm is coustructed as folloﬁs.

1. With a fixed cross section S,(x) over time, Tw(O) is found from the specified values
Po, To, and Go in the inlet cross section of the tube by means of Eq. (18).

2. Using the result obtained for 'rw(O), the system in Eq. (19) is integrated over one
step in x=.

3. From the values of P(Ax), T(Ax) 0(Ax) found at the end of the integration interval,
Tw(Ax) is determined, and integration over the next interval is performed, and so on, as long
as x << L, the length of the pipeline.

4, Making a time step, a new value of the cross-sectional area is obtained from Eq. (20),
and the calculation procedure is repeated.
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This algorithm may alsc be used in calculating the process of hydrate formation in a
borehole or gas pipeline that is not in use. Even in such a borehole, the gas is not at rest,
because the cap at the end of the borehole leaks a certain amount of the gas. The.mass flow
rate of gas in unused boreholes amounts to 5000 m®/day, but even at flow rates of ~ 1000 m®/
day the flow in the borehole is turbulent, since Re ~ 7+ 10® in this case. Therefore, the
above formulation of the problem is valid in the present case. Numerical calculation allows
the safe standing time of a borehole to be determined.

For a short tube, the change in the parameters over the length may be neglected. 1In
the limiting case, a system of equations describing the growth of the hydrate layer in a fixed
tube cross section may be obtained from Eq. (4).
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A case that is important for practical applications is now congidered: gas flow in a
tube in the presence of local resistances. The latter significantly disrupt the conditions
of gas flow in their immediate vicinity. At local resistances, there is a loss in pressure
head, which is associated with pressure variation, in the general case. As a result of the
throttling of the gas, its temperature rises, and hence there is a discontinuity in its
density and velocity. On account of the change in flow parameters of the gas, accelerated
precipitation of hydrates occurs close to the local resistances. The following algorithm is
proposed for the calculation of the hydrate formation with gas flow in a tube with local
resistances.

Using the system in Eq. (19), the calculation is performed in the section of smooth tube
up to the first local resistance. From the solution of this system, the flow parameters pre~
ceding the local resistance (denoted by the subscript "minus") are found. Then, the parame-
ters following the resistance (subscript "plus") are determined from the results for the
parameters preceding it, by means of the system of equations

p+V+S+ = p_V_S._ = 1”,
0 =6_,

oV (22)
2 *

T+ = T—,__B(P"’ T—)(P"-_P"")v
p-=pr (P, T4).

P.=P_—t

These results for the parameters are then taken as the initial values for the calculation in
the section of tube up to the next resistance.
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NOTATION

vV, p, P, 1, mean (over the tube cross section) velocity, demsity, pressure, and enthal~
py; v = l/p, specific volume of gas; ©, Oy, moisture concentration in the gas flow and in
the hydrate; Ry, I,, Sy, radius, perimeter, and cross-sectional area of the gas flow; T, C,

Vyr Us local values of the temperature, concentration, and the normal and tangential compo-
nents of the velocity vector; Dy, velocity of phase-interface motion in the direction of its
normal; jp, normal component of the flow of material at the phase-transition surface; v, u,
A, D, kinematic and dynamic viscosity, heat conduction, and diffusion coefficient, t, %, r,
time and spatial coordinates; L, latent heat of phase transition; vy, PH o’ PR o» saturated
water vapor preasure above water, an empty hydrate lattice, and hydrate? Vg,o, molar volume
of liquid water; Langmuir constants; «, B, ¥, heat- and mass-transfer coefficients and
hydraulic drag coefgicient; 1, local drag coefficient; H, depth at which gas pipeline is
laid; Ro, S¢, radius and cross-sectional area of tube; R, radius of thermal perturbation of
ground; z, compressibility; ¢, Joule~ Thompson coefficient; ug,0, Hgs molecular weight of
water and gas. Indices: w, h, g, HaO, gr, phase interface, hydrate, gas, water, and ground.
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